Chapter 4
Bandpass signhaling principles
and circults



Introduction

In this section, we will answer the questions:

*What is a general representation for
bandpass digital and analog signals?

*How do we represente a modulated signal?

*How do we represent bandpass noise?
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4.1 Complex envelope
representation
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4.1 Complex envelope representation

Modulation

“*The process of imparting the source
Information onto a bandpass signal with a
carrier frequency f. by the introduction of
amplitude or phase perturbations or both.

The modulation may be visualized as a
mapping operation that maps the source
Information onto the bandpass signal.
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4.1 Complex envelope representation

“The modulated signals representation
v(t) = R(t) cos|m,t + O(t)]

v(t) = X(t)cosm t — y(t)sin w,t
X(t) = R(t)cos (1)
y(t) = R(t)sin 6(t)

v(t) = Re{g (t)ej“’ct}
g(t) = R(t)e'®
=R(t)[cos A(t) + jsin O(t)]
=X(1) + jy(t)
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4.1 Complex envelope representation

Theorem

Any physical bandpass waveform can be
represented by

v(t) = Re{g (t)eja’ct}
Two other equivalent representations:
v(t) = R(t) cos|m,t + O(t)]

v(t) = X(t)cosm t — y(t)sin ot
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4.2 Representation of
modulated signals
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4.2 Representation of modulated

signals

“*The modulated signal is represented by

s(t) = Re{g (t)ej“)ct}

where the complex envelope g(t) is a function
of the modulating signal m(t):

g(t) = g[m(t)]

g[.] performs a mapping operation on m(t)
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4.2 Representation of modulated

signals

Properties of complex envelope g(t):
g(t) =x(t) + jy(t) = R(t)e"®
X(t) = Re{g(t)} = R(t) cos(t)
y(t) = Im{g(t)} = R(t)sin 6(t)
R(t) =|g (1) = X* () + Y* (1)

_ -t YO
A(t) = tan (x(t)]




4.3 Spectrum of
bandpass signals
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4.3 Spectrum of bandpass signals

a bandpass waveforiy(t) = Re{g (t)ejwct}

v(t) < V() V(f) ~ G(f)

if > then 2

g(t) © G(1) p(f) ~ py(f)
the spectrum of the bandpass waveform is
1 .

V(f)=§[G(f —f)+G (= f - f)]

the PSD of the waveform is

p.(1) =Py (F = 1)+ p, (-1 = £)

11 G Linu+y

!!!!!!!!!!

Your site here



4.3 Spectrum of bandpass signals

the PSD of the waveform is

p.(1) =[Py (F — £+ B, (- F = 1]

*» The total average normalized power of a bandpass
waveform v(t) is

P, = (V2(1))

~ [ (el
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B Peak envelope power

“*The peak envelope power (PEP) is the
average power that would be obtained if |g(t)|
were to be held constant at its peak value

“*The normalized PEP is given by

Peer = [max‘ g (t)‘]
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B Evaluation of power

+ Example
Evaluate the
magnitude /\
Sspectrum for an |

amplitude- | s
m O d u | ated (A M) (a) Magmtude Spectrum of Modulation

Discrete carrier term

- S5(F) I
S I g n a.I . Weight - ]‘ { with '.u'.i;;lﬂ - T A,
Fub o
[ ' [
: Lower . Upper
/\ L sideband sideband
f. =B ot i f.+ B f B f f.+ B

(b) Magmtude Spectrum of AM Signal
Figure 4-2 Spectrum of AM signal.
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4.5 Bandpass filtering
and linear distortion
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B Bandpass filtering and linear

Equivalent Low-pass filter

vy(t) = Re [g;(t)e"*] s eop vy(t) = Re [gy(t )]
> hy(f) = Re[ky(t)e!®!] & b

H(f) = 12K(f — fc) + 12K*(=f — f)

(a) Bandpass Filter

\H(f )|
1/2|K*(=f = f)| 1/2|K(f = fo)l
I ‘s

(b) Typical Bandpass Filter Frequency Response



B Bandpass filtering and linear

Theorem

“* The complex envelopes for the input, output,
and impulse response of a bandpass filter are
related by

_gz(t) = gl(t)* k(t)

where g,(t) Is the complex envelope of the input
and k(t) is the complex envelope of the impulse
response. It also follows that

%G (f)—lG(f) K(f)
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B Bandpass filtering and linear

Equivalent Low-pass filter

1/2g,(1)

_

1/2G(f)

Equivalent low-pass filter
1/2k(t)
1/2K(f)

1/285(1)

(c) Equivalent (Complex Impulse Response) Low-pass Filter

1/2|K(f)]

1/2G,(f)

(d) Typical Equivalent Low-pass Filter Frequency Response



Linear distortion

*»To have no distortion at the output of a linear
time-invariant system, two requirements must be
satisfied:

s The amplitude response is flat. That is,
H(f)=A A: constant

s The phase response is a linear function of
frequency. That is,

O(f)=/H(f)=—2AT,
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Linear distortion

*For distortionless transmission of
bandpass signals, the channel transfer
function H(f)=|H(f)e!"” needs to
satisfy the following requirements:

s The amplitude response iIs constant.

H(f)=A (4-27a)

s The derivative of the phase response Is
a constant.
1 do(f)

— T
27 df :

(4-27D)
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Linear
distortion

Note:

The EQs. (4-27a)
and (4-27b) are
only sufficient
reguirements for
distortionless
transmission of

bandpass signals.

(b) Phase Response
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Linear distortion

“*The output bandpass signal can be described
by

*The bandpass filter delays the input
complex envelope (i.e., the input
iInformation) by T,, whereas the
carrier is delayed by T, .

“Note: T, will differ from T, unless 6,
happens to be zero.
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Linear distortion

“summary

* The general reguirements for distortionless
transmission of either baseband or bandpass
sighnals are given by Eqgs. (2-150a) and (2-
150b).

* However, for the bandpass case, Eq.(2-150b)
Is overly restrictive and may be replaced by
Eq.(4-27b).

** For distortionless bandpass transmission, it is
only necessary to have a transfer function
with a constant amplitude and a constant
phase derivative over the bandwidth of the

signal. LiMuaxd
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4.6 Bandpass sampling
theorem
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B 4.6 Bandpass sampling theorem

Bandpass sampling Theorem

s If a (real) bandpass waveform has a
nonzero spectrum only over the
frequency interval f,<| f |< f,, where
the transmission bandwidth B; is taken
to be the absolute bandwidth B=f,-f,,
then the waveform may be reproduced
form sample values If the sampling rate

= f. > 2B,
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B 4.6 Bandpass sampling theorem

" Proof .
= the quadrature bandpass representation is

V(t) = x(t)cosw,t — y(t)sin w.t

= sampling theorem

}{sin{m‘b (t—(n/ fb))}}

00 N N -
UOESY X(f—)cosa)ct_y(1:_)Smw°t A, (t—(n/ f,))

N=—00 b b

= For the general case, where the x (n/ f, ) and y (n/ f, )
samples are independent, two real samples are
obtained for each value of », so that the overall
sampling rate for v(z) Is f =2f, >2B.
@ Lsiurd
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S(f)
B,
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i
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-

! Sampler
sit)

Example SA 4.5

The signal s(t) is to Clock

(a) Method 1—Direct sampling

be sampled by using pebomegesti iy Fal e s

/

-
o

Sampled output

any One Of three s(1) Hill]tl[.?i*-n.\\ = Sﬂlﬂir -

Bandpass

methods, for each of
three sampling

methods, determine

the minimum (b) Method TI—Down conversion and sampling

sampling frequency R T
h. 4

Sampled output

f

Clock

Local

oscillator

R e e e B o el i

Sampler
i In-phase sampled output

o
e

. filter
required. f2amar i
s(t) e [Foans
Oscillator J Clock
Bandpass —— = |
signal input 2¢os w1 Sampler
uad-phase sampled output
['Ot\i pass > [ Q PERpORgpRECL L.-
filter

(c) Method IIT—IQ (in-phase and quad-phase) sampling

Figure 4-32 Three methods for sampling bandpass signals.



b Bandpass dimensionality theorem

*Bandpass dimensionality theorem
Assume that a bandpass waveform has

a nonzero spectrum

frequency interval f;

only over the
<| f |<f,, where the

transmission bandwidth B; is taken to be
the absolute bandwidth given by B;= f,-
f, and B.<<f,, the waveform may be

completely specified
Interval by

over a T,-second

N = 2B,

Independent pieces

of information. N iIs

said to be the number of dimensions
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4.7 Received signal plus noise
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| 4.7 Received signal plus noise

-
il q() () {0 a() -
. . Transmission . . m
m Signal :> Carrier > medium Carrier :> Signal .
processing circuits (channel) circuits processing
transmitter receiver

The signal out of the transmitter is

s(t) = Re {g (t)ej‘”Ct}
The received signal plus noise is
r(t) = s(t) *h(t) + n(t)

If the channel is distortionless, H(f)= Ae! ™" = (Ae)%)e >
the signal plus noise at the receiver input is
r(t) = RelAg(t —Tg)e @ Ly n(t)
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| 4.7 Received signal plus noise

» IT the receiver circuits are designed to make
errors due to the channel group delay (T,)
and 6(f) effects negligible, we can consider

the signal plus noise at the receiver input to
be

r(t) = Re{g(t)e ! |+ n(t)

where the effects of channel filtering, If any,
are included by some modification of the
complex envelope g(t).
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